Federated learning (FL) has gained significant attention recently as a privacy-enhancing tool to jointly train a machine learning model by multiple participants. The prior work on FL has mostly studied how to protect label privacy during model training. However, model evaluation in FL might also lead to potential leakage of private label information. In this work, we propose an evaluation algorithm that can accurately compute the widely used AUC (area under the curve) metric when using the label differential privacy (DP) in FL. Through extensive experiments, we show our algorithms can compute accurate AUCs compared to the ground truth. The code is available at {\url{https://github.com/bytedance/fedlearner/tree/master/example/privacy/DPAUC}}.


翻译:最近,联邦学习(FL)作为一种隐私强化工具,吸引了多方参与者共同培训机器学习模式,最近引起了人们的极大关注。以前关于FL的工作主要研究如何在模式培训期间保护标签隐私,然而,FL的模型评价还可能导致私人标签信息泄露。在这项工作中,我们建议一种评价算法,在使用FL的标签差异隐私(DP)时,可以准确计算广泛使用的ACU(曲线下区域)。通过广泛的实验,我们显示我们的算法可以计算准确的AUCs与地面真相的比较。代码可在 url{https://github.com/bytedance/fedlearner/tree/master/example/privacy/DPAUC}查阅。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
专知会员服务
124+阅读 · 2020年9月8日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员