We present Broadcast by Balanced Saturation (BBS), a general broadcast algorithm designed to optimize communication efficiency across diverse network topologies. BBS maximizes node utilization, addressing challenges in broadcast operations such as topology constraints, bandwidth limitations, and synchronization overhead, particularly in large-scale systems like supercomputers. The algorithm ensures sustained activity with nodes throughout the broadcast, thereby enhancing data propagation and significantly reducing latency. Through a precise communication cycle, BBS provides a repeatable, streamlined, stepwise broadcasting framework. Simulation results across various topologies demonstrate that the BBS algorithm consistently outperforms common general broadcast algorithms, often by a substantial margin. These findings suggest that BBS is a versatile and robust framework with the potential to redefine broadcast strategies across network topologies.


翻译:本文提出了一种名为平衡饱和广播(Broadcast by Balanced Saturation, BBS)的通用广播算法,旨在优化跨不同网络拓扑的通信效率。BBS通过最大化节点利用率,解决了广播操作中的拓扑约束、带宽限制和同步开销等挑战,尤其是在超级计算机等大规模系统中。该算法确保在整个广播过程中节点持续处于活动状态,从而增强了数据传播能力,并显著降低了延迟。通过精确的通信周期,BBS提供了一个可重复、精简且逐步推进的广播框架。在不同拓扑结构上的仿真结果表明,BBS算法的性能始终优于常见的通用广播算法,且优势通常十分显著。这些发现表明,BBS是一个通用且鲁棒的框架,具有重新定义跨网络拓扑广播策略的潜力。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2021年7月20日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员