Consider an observation of a multivariate temporal point process $N$ with law $\mathcal P$ on the time interval $[0,T]$. To test the null hypothesis that $\mathcal P$ belongs to a given parametric family, we construct a convergent compensated counting process to which we apply an innovation martingale transformation. We prove that the resulting process converges weakly to a standard Wiener process. Consequently, taking a suitable functional of this process yields an asymptotically distribution-free goodness-of-fit test for point processes. For several standard tests based on the increments of this transformed process, we establish consistency under alternative hypotheses. Finally, we assess the performance of the proposed testing procedure through a Monte Carlo simulation study and illustrate its practical utility with two real-data examples.


翻译:考虑在时间区间$[0,T]$上观测到一个具有分布$\mathcal P$的多元时间点过程$N$。为检验$\mathcal P$属于给定参数族这一原假设,我们构造了一个收敛的补偿计数过程,并对其应用创新鞅变换。我们证明了所得过程弱收敛于标准维纳过程。因此,选取该过程的适当泛函可得到渐近分布自由的点过程拟合优度检验。针对基于该变换过程增量的若干标准检验,我们建立了备择假设下的一致性。最后,通过蒙特卡洛模拟研究评估了所提检验程序的性能,并利用两个实际数据案例说明了其实际效用。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
33+阅读 · 2021年3月7日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
69+阅读 · 2022年9月7日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关论文
Arxiv
69+阅读 · 2022年9月7日
Arxiv
18+阅读 · 2021年3月16日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Augmentation for small object detection
Arxiv
13+阅读 · 2019年2月19日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员