The stable unit treatment value (SUTVA) is a crucial assumption in the Difference-in-Differences (DiD) research design. It rules out hidden versions of treatment and any sort of interference and spillover effects across units. Even if this is a strong assumption, it has not received much attention from DiD practitioners and, in many cases, it is not even explicitly stated as an assumption, especially the no-interference assumption. In this technical note, we investigate what the DiD estimand identifies in the presence of unknown interference. We show that the DiD estimand identifies a contrast of causal effects, but it is not informative on any of these causal effects separately, without invoking further assumptions. Then, we explore different sets of assumptions under which the DiD estimand becomes informative about specific causal effects. We illustrate these results by revisiting the seminal paper on minimum wages and employment by Card and Krueger (1994).


翻译:稳定单元处理值(SUTVA)是双重差分(DiD)研究设计中的一个关键假设。它排除了隐藏的处理版本以及单元间的任何干扰和溢出效应。尽管这是一个强假设,但并未受到DiD实践者的足够重视,且在多数情况下,甚至未被明确表述为一项假设——尤其是无干扰假设。在本技术报告中,我们探究了在存在未知干扰的情况下,DiD估计量所识别的对象。我们证明,DiD估计量识别的是因果效应的对比,但若不引入进一步假设,它无法单独提供关于其中任一因果效应的信息。随后,我们探讨了在不同假设集合下,DiD估计量如何能够提供关于特定因果效应的信息。我们通过重审Card和Krueger(1994)关于最低工资与就业的开创性论文来阐释这些结论。

0
下载
关闭预览

相关内容

【ICML2024】超图增强的双半监督图分类
专知会员服务
15+阅读 · 2024年5月9日
【ICML2023】无消息传递的transformer图归纳偏差
专知会员服务
26+阅读 · 2023年6月1日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2024】超图增强的双半监督图分类
专知会员服务
15+阅读 · 2024年5月9日
【ICML2023】无消息传递的transformer图归纳偏差
专知会员服务
26+阅读 · 2023年6月1日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员