In this paper, we present the convergence analysis of momentum methods in training a two-layer over-parameterized ReLU neural network, where the number of parameters is significantly larger than that of training instances. Existing works on momentum methods show that the heavy-ball method (HB) and Nesterov's accelerated method (NAG) share the same limiting ordinary differential equation (ODE), which leads to identical convergence rate. From a high-resolution dynamical view, we show that HB differs from NAG in terms of the convergence rate. In addition, our findings provide tighter upper bounds on convergence for the high-resolution ODEs of HB and NAG.


翻译:在本文中,我们介绍对培训两级超分度ReLU神经网络的势头方法的趋同分析,该网络的参数数量远远超过培训实例的数量。关于动力方法的现有工作表明,重球方法和Nesterov加速法(NAG)具有相同的限制普通差分方程式(ODE),这导致相同的趋同率。从高分辨率动态观点来看,我们显示HB在趋同率方面不同于NAG。此外,我们的调查结果为HB和NAG的高分辨率极分分子的趋同提供了更严格的上限。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员