Preventing the spread of infectious diseases requires implementing interventions at various levels of government and evaluating the potential impact and efficacy of those preemptive measures. Agent-based modeling can be used for detailed studies of epidemic diffusion and possible interventions. Modeling of epidemic diffusion in large social contact networks requires the use of parallel algorithms and resources. In this work, we present Loimos, a scalable parallel framework for simulating epidemic diffusion. Loimos uses a hybrid of time-stepping and discrete-event simulation to model disease spread, and is implemented on top of an asynchronous, many-task runtime. We demonstrate that Loimos is to able to achieve significant speedups while scaling to large core counts. In particular, Loimos is able to simulate 200 days of a COVID-19 outbreak on a digital twin of California in about 42 seconds, for an average of 4.6 billion traversed edges per second (TEPS), using 4096 cores on Perlmutter at NERSC.


翻译:预防传染病传播需要在各级政府层面实施干预措施,并评估这些预防性措施的潜在影响与效能。基于智能体的建模方法可用于对疫情扩散及潜在干预措施进行精细化研究。在大型社会接触网络中模拟疫情扩散过程,需要运用并行算法与计算资源。本研究提出Loimos——一个可扩展的并行疫情扩散模拟框架。Loimos采用时间步进与离散事件相结合的混合模拟方法对疾病传播进行建模,并构建于异步多任务运行时系统之上。实验证明,Loimos在扩展至大规模核心数时能实现显著的加速效果。具体而言,在NERSC的Perlmutter超算系统上使用4096个核心,Loimos仅需约42秒即可完成加州数字孪生模型中200天的COVID-19疫情模拟,平均每秒可遍历46亿条边(TEPS)。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员