Chronic pain is a global health challenge affecting millions of individuals, making it essential for physicians to have reliable and objective methods to measure the functional impact of clinical treatments. Traditionally used methods, like the numeric rating scale, while personalized and easy to use, are subjective due to their self-reported nature. Thus, this paper proposes DETECT (Data-Driven Evaluation of Treatments Enabled by Classification Transformers), a data-driven framework that assesses treatment success by comparing patient activities of daily life before and after treatment. We use DETECT on public benchmark datasets and simulated patient data from smartphone sensors. Our results demonstrate that DETECT is objective yet lightweight, making it a significant and novel contribution to clinical decision-making. By using DETECT, independently or together with other self-reported metrics, physicians can improve their understanding of their treatment impacts, ultimately leading to more personalized and responsive patient care.


翻译:慢性疼痛是全球性的健康挑战,影响着数百万患者,因此医生需要可靠且客观的方法来评估临床治疗对功能的影响。传统方法如数字评分量表虽具有个性化且易于使用的特点,但由于其自我报告的性质而存在主观性。为此,本文提出DETECT(基于分类Transformer的数据驱动治疗评估框架),该框架通过比较患者治疗前后日常生活活动数据来评估治疗成效。我们在公开基准数据集及智能手机传感器模拟的患者数据上应用DETECT。结果表明,DETECT具有客观且轻量化的特点,为临床决策提供了重要且新颖的贡献。通过单独或结合其他自我报告指标使用DETECT,医生能够更准确地理解治疗影响,最终实现更个性化、响应更及时的患者照护。

0
下载
关闭预览

相关内容

通过采集数据(这里的数据必须满足大、全、细、时),将数据进行组织形成信息流,在做决策或者产品、运营等优化时,根据不同需求对信息流进行提炼总结,从而在数据的支撑下或者指导下进行科学的行动叫做数据驱动。
【ICML2025】GCAL:使图模型适应不断演变的领域偏移
专知会员服务
9+阅读 · 2025年5月23日
DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2025年2月11日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【ICML2025】GCAL:使图模型适应不断演变的领域偏移
专知会员服务
9+阅读 · 2025年5月23日
DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2025年2月11日
MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
9+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员