Detecting malicious URLs is a crucial aspect of web search and mining, significantly impacting internet security. Though advancements in machine learning have improved the effectiveness of detection methods, these methods still face significant challenges in their capacity to generalize and their resilience against evolving threats. In this paper, we propose PyraTrans, an approach that combines the strengths of pretrained Transformers and pyramid feature learning for improving malicious URL detection. We implement PyraTrans by leveraging a pretrained CharBERT as the base and augmenting it with 3 connected feature modules: 1) The Encoder Feature Extraction module, which extracts representations from each encoder layer of CharBERT to obtain multi-order features; 2) The Multi-Scale Feature Learning Module, which captures multi-scale local contextual insights and aggregate information across different layer-levels; and 3) The Pyramid Spatial Attention Module, which learns hierarchical and spatial feature attentions, highlighting critical classification signals while reducing noise. The proposed approach addresses the limitations of the Transformer in local feature learning and spatial awareness, and enabling us to extract multi-order, multi-scale URL feature representations with enhanced attentional focus. PyraTrans is evaluated using 4 benchmark datasets, where it demonstrated significant advancements over prior baseline methods. Particularly, on the imbalanced dataset, our method, with just 10% of the data for training, the TPR is 3.3-6.5 times and the F1-score is 2.9-4.5 times that of the baseline. Our approach also demonstrates robustness against adversarial attacks. Codes and data are available at https://github.com/Alixyvtte/PyraTrans.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Pyramid is a small, fast, down-to-earth Python web application development framework.
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员