Simulation of realistic classical mechanical systems is of great importance to many areas of engineering such as robotics, dynamics of rotating machinery and control theory. In this work, we develop quantum algorithms to estimate quantities of interest such as the kinetic energy in a given classical mechanical system in the presence of friction or damping as well as forcing or source terms, which makes the algorithm of practical interest. We show that for such systems, the quantum algorithm scales polynomially with the logarithm of the dimension of the system. We cast this problem in terms of Hamilton's equations of motion (equivalent to the first variation of the Lagrangian) and solve them using quantum algorithms for differential equations. We then consider the hardness of estimating the kinetic energy of a damped coupled oscillator system. We show that estimating the kinetic energy at a given time of this system to within additive precision is BQP hard when the strength of the damping term is bounded by an inverse polynomial in the number of qubits. We then consider the problem of designing optimal control of classical systems, which can be cast as the second variation of the Lagrangian. In this direction, we first consider the Riccati equation, which is a nonlinear differential equation ubiquitous in control theory. We give an efficient quantum algorithm to solve the Riccati differential equation well into the nonlinear regime. To our knowledge, this is the first example of any nonlinear differential equation that can be solved when the strength of the nonlinearity is asymptotically greater than the amount of dissipation. We then show how to use this algorithm to solve the linear quadratic regulator problem, which is an example of the Hamilton-Jacobi-Bellman equation.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员