In this paper, we introduce a sketching algorithm for constructing a tensor train representation of a probability density from its samples. Our method deviates from the standard recursive SVD-based procedure for constructing a tensor train. Instead, we formulate and solve a sequence of small linear systems for the individual tensor train cores. This approach can avoid the curse of dimensionality that threatens both the algorithmic and sample complexities of the recovery problem. Specifically, for Markov models, we prove that the tensor cores can be recovered with a sample complexity that scales logarithmically in the dimensionality. Finally, we illustrate the performance of the method with several numerical experiments.


翻译:在本文中, 我们引入了一种用于建造高压列车的草图算法, 显示从样本中得出的概率密度。 我们的方法偏离了用于建造高压列车的标准递归 SVD 程序 。 相反, 我们为单个高压列列车核心制定和解决一个小线性系统的序列 。 这种方法可以避免威胁恢复问题算法和样本复杂性的维度诅咒 。 具体地说, 对于 Markov 模型来说, 我们证明, 高压列车核心可以用一个样本复杂度来回收, 其规模在维度上是逻辑的。 最后, 我们用数个数字实验来说明该方法的性能 。</s>

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员