We introduce SyncLipMAE, a self-supervised pretraining framework for talking-face video that learns synchronization-aware and transferable facial dynamics from unlabeled audio-visual streams. Our approach couples masked visual modeling with cross-modal contrastive alignment and employs three per-frame prompt tokens that explicitly encode the essential factors of a talking-face frame - identity, vocal motion (speech-synchronized facial dynamics), and ambient motion (audio-agnostic movements such as blinks and head pose). The contrastive objective uses time-aligned vocal-motion and audio tokens as positives and misaligned pairs as negatives, driving both modalities into a shared embedding space and yielding token-level audio-visual stream synchronization. After pretraining, the aligned audio tokens together with the visual prompt tokens (identity, vocal motion, ambient motion) form a unified interface for four disparate downstream settings: (i) audio-visual stream synchronization; (ii) facial emotion and head/face action recognition; (iii) visual speech recognition; and (iv) visual dubbing, for which we enable indistinguishable audio- or video-driven control within a single model. Across four task families that require distinct capabilities, SyncLipMAE achieves state-of-the-art results, underscoring the effectiveness of synchronization-aware, factorized self-supervised pretraining.


翻译:我们提出了SyncLipMAE,一种用于说话人脸视频的自监督预训练框架,能够从未标注的视听流中学习同步感知且可迁移的面部动态。该方法将掩码视觉建模与跨模态对比对齐相结合,并采用三个逐帧提示令牌,显式编码说话人脸帧的关键要素——身份、发声动作(与语音同步的面部动态)以及环境动作(与音频无关的运动,如眨眼和头部姿态)。对比学习目标以时间对齐的发声动作令牌和音频令牌作为正样本,以未对齐的配对作为负样本,从而驱动两种模态进入共享嵌入空间,并实现令牌级的视听流同步。预训练完成后,对齐的音频令牌与视觉提示令牌(身份、发声动作、环境动作)共同构成一个统一接口,适用于四种不同的下游场景:(i)视听流同步;(ii)面部表情及头部/面部动作识别;(iii)视觉语音识别;以及(iv)视觉配音——我们在单一模型内实现了难以区分的音频驱动或视频驱动控制。在需要不同能力的四类任务族中,SyncLipMAE均取得了最先进的结果,这印证了同步感知、因子化自监督预训练的有效性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
10+阅读 · 2018年2月17日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员