We recently proposed a method for estimation of states and parameters in stochastic differential equations, which included intermediate time points between observations and used the Laplace approximation to integrate out these intermediate states. In this paper, we establish a Laplace approximation for the transition probabilities in the continuous-time limit where the computational time step between intermediate states vanishes. Our technique views the driving Brownian motion as a control, casts the problem as one of minimum effort control between two states, and employs a Girsanov shift of probability measure as well as a weak noise approximation to obtain the Laplace approximation. We demonstrate the technique with examples; one where the approximation is exact due to a property of coordinate transforms, and one where contributions from non-near paths impair the approximation. We assess the order of discrete-time scheme, and demonstrate the Strang splitting leads to higher order and accuracy than Euler-type discretization. Finally, we investigate numerically how the accuracy of the approximation depends on the noise intensity and the length of the time interval.


翻译:我们近期提出了一种用于估计随机微分方程中状态与参数的方法,该方法通过在观测点之间引入中间时间点,并利用拉普拉斯近似对中间状态进行积分。本文针对中间状态间计算时间步长趋于零的连续时间极限情形,建立了转移概率的拉普拉斯近似框架。我们的技术将驱动布朗运动视为控制变量,将问题转化为两点间最小能耗控制问题,并采用Girsanov测度变换结合弱噪声近似来获得拉普拉斯近似。我们通过算例验证该技术:其中一例因坐标变换特性使近似结果精确,另一例则因非邻近路径的贡献导致近似精度下降。我们评估了离散时间格式的阶数,证明Strang分裂格式相比欧拉型离散化具有更高阶精度。最后,我们通过数值实验研究了近似精度与噪声强度及时间区间长度的依赖关系。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员