Causal discovery is the subfield of causal inference concerned with estimating the structure of cause-and-effect relationships in a system of interrelated variables, as opposed to quantifying the strength of causal effects. As interest in causal discovery builds in fields such as ecology, public health, and environmental sciences where data is regularly collected with spatial and temporal structures, approaches must evolve to manage autocorrelation and complex confounding. As it stands, the few proposed causal discovery algorithms for spatiotemporal data require summarizing across locations, ignore spatial autocorrelation, and/or scale poorly to high dimensions. Here, we introduce our developing framework that extends time-series causal discovery to systems with spatial structure, building upon work on causal discovery across contexts and methods for handling spatial confounding in causal effect estimation. We close by outlining remaining gaps in the literature and directions for future research.


翻译:因果发现是因果推断的一个子领域,专注于估计相互关联变量系统中因果关系的结构,而非量化因果效应的强度。随着生态学、公共卫生和环境科学等领域对因果发现的兴趣日益增长,这些领域的数据通常具有时空结构,因此方法必须演进以处理自相关和复杂的混杂因素。目前,少数提出的时空数据因果发现算法需要跨位置进行汇总、忽略空间自相关,和/或在处理高维数据时扩展性较差。本文中,我们介绍了正在开发的框架,该框架将时间序列因果发现扩展到具有空间结构的系统,基于跨情境的因果发现工作以及处理因果效应估计中空间混杂的方法。最后,我们概述了文献中尚存的空白以及未来研究的方向。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2022年10月15日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
10+阅读 · 2021年2月18日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
14+阅读 · 2022年10月15日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
10+阅读 · 2021年2月18日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员