Conditional distributions, as defined by the Markov category framework, are studied in the setting of matrix algebras (quantum systems). Their construction as linear unital maps are obtained via a categorical Bayesian inversion procedure. Simple criteria establishing when such linear maps are positive are obtained. Several examples are provided, including the standard EPR scenario, where the EPR correlations are reproduced in a purely compositional (categorical) manner. A comparison between the Bayes map, the Petz recovery map, and the Leifer-Spekkens acausal belief propagation is provided, illustrating some similarities and key differences.


翻译:在设置矩阵代数(量子系统)时研究Markov类别框架界定的有条件分布,它们作为线性单位图的构造是通过一个绝对的巴伊西亚反向程序得出的,简单的标准是确定这种线性地图何时为正数,提供了几个例子,包括标准 EPR 设想,即EPR 相关关系纯粹以组成(分类)方式复制。提供了Bayes 地图、Petz 恢复地图和Leifer-Spekkkens causal信仰传播的比较,说明了一些相似之处和关键差异。

0
下载
关闭预览

相关内容

专知会员服务
98+阅读 · 2021年8月28日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
55+阅读 · 2020年12月15日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
专知会员服务
98+阅读 · 2021年8月28日
【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
55+阅读 · 2020年12月15日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年10月29日
Arxiv
0+阅读 · 2021年10月29日
Arxiv
3+阅读 · 2017年12月1日
Top
微信扫码咨询专知VIP会员