Quantum machine learning (QML) seeks to exploit the intrinsic properties of quantum mechanical systems, including superposition, coherence, and quantum entanglement for classical data processing. However, due to the exponential growth of the Hilbert space, QML faces practical limits in classical simulations with the state-vector representation of quantum system. On the other hand, phase-space methods offer an alternative by encoding quantum states as quasi-probability functions. Building on prior work in qubit phase-space and the Stratonovich-Weyl (SW) correspondence, we construct a closed, composable dynamical formalism for one- and many-qubit systems in phase-space. This formalism replaces the operator algebra of the Pauli group with function dynamics on symplectic manifolds, and recasts the curse of dimensionality in terms of harmonic support on a domain that scales linearly with the number of qubits. It opens a new route for QML based on variational modelling over phase-space.


翻译:量子机器学习(QML)旨在利用量子力学系统的内在特性——包括叠加、相干性和量子纠缠——来处理经典数据。然而,由于希尔伯特空间的指数级增长,采用量子系统的态矢量表示进行经典模拟时,QML面临着实际限制。另一方面,相空间方法通过将量子态编码为准概率函数,提供了一种替代方案。基于先前在量子位相空间及Stratonovich-Weyl(SW)对应关系上的工作,我们为单量子位与多量子位系统在相空间中构建了一个封闭、可组合的动力学形式体系。该形式体系将泡利群的算子代数替换为辛流形上的函数动力学,并将维度灾难重新表述为定义域上的谐波支撑问题,该定义域的规模随量子位数呈线性增长。这为基于相空间变分建模的QML开辟了一条新路径。

0
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年10月10日
Arxiv
126+阅读 · 2020年9月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员