As Large Language Models (LLMs) continue to revolutionize Natural Language Processing (NLP) applications, critical concerns about their trustworthiness persist, particularly in safety and robustness. To address these challenges, we introduce TRUSTVIS, an automated evaluation framework that provides a comprehensive assessment of LLM trustworthiness. A key feature of our framework is its interactive user interface, designed to offer intuitive visualizations of trustworthiness metrics. By integrating well-known perturbation methods like AutoDAN and employing majority voting across various evaluation methods, TRUSTVIS not only provides reliable results but also makes complex evaluation processes accessible to users. Preliminary case studies on models like Vicuna-7b, Llama2-7b, and GPT-3.5 demonstrate the effectiveness of our framework in identifying safety and robustness vulnerabilities, while the interactive interface allows users to explore results in detail, empowering targeted model improvements. Video Link: https://youtu.be/k1TrBqNVg8g


翻译:随着大语言模型持续推动自然语言处理应用的变革,其可信度问题——尤其是在安全性与鲁棒性方面——仍备受关注。为应对这些挑战,我们提出了TRUSTVIS,一个能够对大语言模型可信度进行全面评估的自动化框架。该框架的核心特性是其交互式用户界面,旨在为用户提供直观的可信度指标可视化。通过集成AutoDAN等成熟的扰动方法,并采用多种评估方法间的多数投票机制,TRUSTVIS不仅能够提供可靠的评估结果,还能使用户易于理解复杂的评估流程。在Vicuna-7b、Llama2-7b和GPT-3.5等模型上的初步案例研究表明,我们的框架能有效识别模型在安全性与鲁棒性方面的潜在缺陷,同时其交互式界面支持用户深入探索评估结果,从而助力进行有针对性的模型改进。视频链接:https://youtu.be/k1TrBqNVg8g

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员