The distance of a graph from being triangle-free is a fundamental graph parameter, counting the number of edges that need to be removed from a graph in order for it to become triangle-free. Its corresponding computational problem is the classic minimum triangle edge transversal problem, and its normalized value is the baseline for triangle-freeness testing algorithms. While triangle-freeness testing has been successfully studied in the distributed setting, computing the distance itself in a distributed setting is unknown, to the best of our knowledge, despite being well-studied in the centralized setting. This work addresses the computation of the minimum triangle edge transversal in distributed networks. We show with a simple warm-up construction that this is a global task, requiring $\Omega(D)$ rounds even in the $\mathsf{LOCAL}$ model with unbounded messages, where $D$ is the diameter of the network. However, we show that approximating this value can be done much faster. A $(1+\epsilon)$-approximation can be obtained in $\text{poly}\log{n}$ rounds, where $n$ is the size of the network graph. Moreover, faster approximations can be obtained, at the cost of increasing the approximation factor to roughly 3, by a reduction to the minimum hypergraph vertex cover problem. With a time overhead of the maximum degree $\Delta$, this can also be applied to the $\mathsf{CONGEST}$ model, in which messages are bounded. Our key technical contribution is proving that computing an exact solution is ``as hard as it gets'' in $\mathsf{CONGEST}$, requiring a near-quadratic number of rounds. Because this problem is an edge selection problem, as opposed to previous lower bounds that were for node selection problems, major challenges arise in constructing the lower bound, requiring us to develop novel ingredients.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员