We study the complexity of computing a uniform Nash equilibrium on a non-win-lose bimatrix game. It is known that such a problem is NP-complete even if a bimatrix game is win-lose (Bonifaci et al., 2008). Fortunately, if a win-lose bimatrix game is planar, then uniform Nash equilibria always exist. We have a polynomial-time algorithm for finding a uniform Nash equilibrium of a planar win-lose bimatrix game (Addario-Berry et al., 2007). The following question is left: How hard to compute a uniform Nash equilibrium on a planar non-win-lose bimatrix game? This paper resolves this issue. We prove that the problem of deciding whether a non-win-lose planar bimatrix game has uniform Nash equilibrium is also NP-complete.


翻译:我们研究了在非双赢的双马基游戏上计算统一的纳什平衡的复杂性。已知这样一个问题即使双马基游戏是双赢的,也是NP的完成(Bonifaci等人,2008年)。幸运的是,如果双马基游戏是双马基游戏,那么统一的纳什平衡就一直存在。我们有一个多元时间算法,用于在双马基游戏中找到统一的纳什平衡(Adario-Berry等人,2007年),下面的问题是:在双马基游戏上计算统一的纳什平衡有多难?本文解决这个问题。我们证明,决定非双马基游戏是否具有统一的纳什平衡的问题也是NP的完成。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月3日
Arxiv
0+阅读 · 2022年10月1日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员