Personality is a psychological factor that reflects people's preferences, which in turn influences their decision-making. We hypothesize that accurate modeling of users' personalities improves recommendation systems' performance. However, acquiring such personality profiles is both sensitive and expensive. We address this problem by introducing a novel method to automatically extract personality profiles from public product review text. We then design and assess three context-aware recommendation architectures that leverage the profiles to test our hypothesis. Experiments on our two newly contributed personality datasets -- Amazon-beauty and Amazon-music -- validate our hypothesis, showing performance boosts of 3--28%.Our analysis uncovers that varying personality types contribute differently to recommendation performance: open and extroverted personalities are most helpful in music recommendation, while a conscientious personality is most helpful in beauty product recommendation.


翻译:个性是表现人们喜好的心理因素,进而影响其决策。我们假设准确地建模用户的个性会提高推荐系统的性能。然而,获取这样的个性描述既敏感又昂贵。我们通过引入一种新的方法来自动提取公共产品评论文本中的个性描述来解决这个问题。然后设计和评估三个利用这些个性描述的上下文感知推荐体系结构来测试我们的假说。对我们贡献的两个新个性数据集Amazon-beauty和Amazon-music的实验验证了我们的假设,展示了3-28%的性能提升。我们的分析揭示了不同的个性类型在推荐性能上的不同贡献:开放和外向的个性在音乐推荐中最有帮助,而有责任感的个性在美容产品推荐中最有帮助。

0
下载
关闭预览

相关内容

Performance:International Symposium on Computer Performance Modeling, Measurements and Evaluation。 Explanation:计算机性能建模、测量和评估国际研讨会。 Publisher:ACM。 SIT:http://dblp.uni-trier.de/db/conf/performance/
【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
27+阅读 · 2022年9月30日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
相关基金
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员