The European Union's AI Act represents a crucial step towards regulating ethical and responsible AI systems. However, we find an absence of quantifiable fairness metrics and the ambiguity in terminology, particularly the interchangeable use of the keywords transparency, explainability, and interpretability in the new EU AI Act and no reference of transparency of ethical compliance. We argue that this ambiguity creates substantial liability risk that would deter investment. Fairness transparency is strategically important. We recommend a more tailored regulatory framework to enhance the new EU AI regulation. Further-more, we propose a public system framework to assess the fairness and transparency of AI systems. Drawing from past work, we advocate for the standardization of industry best practices as a necessary addition to broad regulations to achieve the level of details required in industry, while preventing stifling innovation and investment in the AI sector. The proposals are exemplified with the case of ASR and speech synthesizers.


翻译:欧盟《人工智能法案》是迈向规范伦理与负责任人工智能系统的关键一步。然而,我们发现该法案缺乏可量化的公平性指标,且术语存在模糊性——特别是“透明度”、“可解释性”与“可阐释性”等关键词在新法案中被交替使用,同时未提及伦理合规的透明度问题。我们认为,这种模糊性将产生重大的责任风险,从而抑制投资。公平性透明度具有战略重要性。我们建议制定更具针对性的监管框架以完善欧盟新的人工智能法规。此外,我们提出一个用于评估人工智能系统公平性与透明度的公共系统框架。借鉴既往研究,我们主张将行业最佳实践标准化,作为对宽泛法规的必要补充,以满足产业界对具体细节的要求,同时避免抑制人工智能领域的创新与投资。本文以自动语音识别与语音合成系统为例对提案进行了具体说明。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员