Computing-in-Memory (CIM) architectures have emerged as a promising solution for accelerating Deep Neural Networks (DNNs) by mitigating data movement bottlenecks. However, realizing the potential of CIM requires specialized dataflow optimizations, which are challenged by an expansive design space and strict architectural constraints. Existing optimization approaches often fail to fully exploit CIM accelerators, leading to noticeable gaps between theoretical and actual system-level efficiency. To address these limitations, we propose the MIREDO framework, which formulates dataflow optimization as a Mixed-Integer Programming (MIP) problem. MIREDO introduces a hierarchical hardware abstraction coupled with an analytical latency model designed to accurately reflect the complex data transfer behaviors within CIM systems. By jointly modeling workload characteristics, dataflow strategies, and CIM-specific constraints, MIREDO systematically navigates the vast design space to determine the optimal dataflow configurations. Evaluation results demonstrate that MIREDO significantly enhances performance, achieving up to $3.2\times$ improvement across various DNN models and hardware setups.


翻译:存内计算(CIM)架构通过缓解数据移动瓶颈,已成为加速深度神经网络(DNN)的一种有前景的解决方案。然而,实现CIM的潜力需要专门的数据流优化,这面临着广阔的设计空间和严格的架构约束的挑战。现有优化方法往往无法充分利用CIM加速器,导致理论效率与实际系统级效率之间存在显著差距。为解决这些局限性,我们提出了MIREDO框架,该框架将数据流优化表述为一个混合整数规划(MIP)问题。MIREDO引入了一种层次化的硬件抽象,并结合了一个旨在准确反映CIM系统内复杂数据传输行为的分析性延迟模型。通过联合建模工作负载特性、数据流策略以及CIM特定的约束,MIREDO系统地探索广阔的设计空间,以确定最优的数据流配置。评估结果表明,MIREDO显著提升了性能,在各种DNN模型和硬件设置下实现了高达$3.2\times$的性能提升。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员