In numerical linear algebra, considerable effort has been devoted to obtaining faster algorithms for linear systems whose underlying matrices exhibit structural properties. A prominent success story is the method of generalized nested dissection~[Lipton-Rose-Tarjan'79] for separable matrices. On the other hand, the majority of recent developments in the design of efficient linear program (LP) solves do not leverage the ideas underlying these faster linear system solvers nor consider the separable structure of the constraint matrix. We give a faster algorithm for separable linear programs. Specifically, we consider LPs of the form $\min_{\mathbf{A}\mathbf{x}=\mathbf{b}, \mathbf{l}\leq\mathbf{x}\leq\mathbf{u}} \mathbf{c}^\top\mathbf{x}$, where the graphical support of the constraint matrix $\mathbf{A} \in \mathbb{R}^{n\times m}$ is $O(n^\alpha)$-separable. These include flow problems on planar graphs and low treewidth matrices among others. We present an $\tilde{O}((m+m^{1/2 + 2\alpha}) \log(1/\epsilon))$ time algorithm for these LPs, where $\epsilon$ is the relative accuracy of the solution. Our new solver has two important implications: for the $k$-multicommodity flow problem on planar graphs, we obtain an algorithm running in $\tilde{O}(k^{5/2} m^{3/2})$ time in the high accuracy regime; and when the support of $\mathbf{A}$ is $O(n^\alpha)$-separable with $\alpha \leq 1/4$, our algorithm runs in $\tilde{O}(m)$ time, which is nearly optimal. The latter significantly improves upon the natural approach of combining interior point methods and nested dissection, whose time complexity is lower bounded by $\Omega(\sqrt{m}(m+m^{\alpha\omega}))=\Omega(m^{3/2})$, where $\omega$ is the matrix multiplication constant. Lastly, in the setting of low-treewidth LPs, we recover the results of [DLY,STOC21] and [GS,22] with significantly simpler data structure machinery.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年12月8日
Arxiv
31+阅读 · 2021年6月30日
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 2023年12月8日
Arxiv
31+阅读 · 2021年6月30日
Adaptive Synthetic Characters for Military Training
Arxiv
50+阅读 · 2021年1月6日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2019年4月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员