Hetyei introduced in 2019 the homogenized Linial arrangement and showed that its regions are counted by the median Genocchi numbers. In the course of devising a different proof of Hetyei's result, Lazar and Wachs considered another hyperplane arrangement that is associated with certain bipartite graph called Ferrers graph. We bijectively label the regions of this latter arrangement with permutations whose ascents are subject to a parity restriction. This labeling not only establishes the equivalence between two enumerative results due to Hetyei and Lazar-Wachs, repectively, but also motivates us to derive and investigate a Seidel-like triangle that interweaves Genocchi numbers of both kinds. Applying similar ideas, we introduce three more variants of permutations with analogous parity restrictions. We provide labelings for regions of the aforementioned arrangement using these three sets of restricted permutations as well. Furthermore, bijections from our first permutation model to two previously known permutation models are established.


翻译:Hetyei于2019年引入了齐次Linial构型,并证明其区域数由中值热那契数给出。在构思Hetyei结果的不同证明过程中,Lazar与Wachs考察了另一个与特定二分图(称为Ferrers图)相关联的超平面构型。我们通过双射方式,用满足上升点奇偶性限制的排列来标记后一构型的区域。这一标记不仅建立了Hetyei与Lazar-Wachs各自枚举结果的等价性,还促使我们推导并研究一个交织两类热那契数的类Seidel三角。运用类似思想,我们引入另外三种具有类似奇偶性限制的排列变体,并同样使用这三类受限排列集为上述构型的区域提供标记。此外,我们建立了从首个排列模型到两个已知排列模型的双射。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
57+阅读 · 2022年1月5日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
Arxiv
14+阅读 · 2018年4月18日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
论文浅尝 | 利用 RNN 和 CNN 构建基于 FreeBase 的问答系统
开放知识图谱
11+阅读 · 2018年4月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关论文
Arxiv
16+阅读 · 2022年5月17日
Arxiv
57+阅读 · 2022年1月5日
Optimization for deep learning: theory and algorithms
Arxiv
106+阅读 · 2019年12月19日
Arxiv
14+阅读 · 2018年4月18日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员