The four-parameter kappa distribution (K4D) is a generalized form of some commonly used distributions such as generalized logistic, generalized Pareto, generalized Gumbel, and generalized extreme value (GEV) distributions. Owing to its flexibility, the K4D is widely applied in modeling in several fields such as hydrology and climatic change. For the estimation of the four parameters, the maximum likelihood approach and the method of L-moments are usually employed. The L-moment estimator (LME) method works well for some parameter spaces, with up to a moderate sample size, but it is sometimes not feasible in terms of computing the appropriate estimates. Meanwhile, the maximum likelihood estimator (MLE) is optimal for large samples and applicable to a very wide range of situations, including non-stationary data. However, using the MLE of K4D with small sample sizes shows substantially poor performance in terms of a large variance of the estimator. We therefore propose a maximum penalized likelihood estimation (MPLE) of K4D by adjusting the existing penalty functions that restrict the parameter space. Eighteen combinations of penalties for two shape parameters are considered and compared. The MPLE retains modeling flexibility and large sample optimality while also improving on small sample properties. The properties of the proposed estimator are verified through a Monte Carlo simulation, and an application case is demonstrated taking Thailand's annual maximum temperature data. Based on this study, we suggest using combinations of penalty functions in general.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年10月1日
Arxiv
0+阅读 · 2024年9月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员