Hypergraphs provide a natural framework for modeling higher-order interactions, yet their theoretical underpinnings in semi-supervised learning remain limited. We provide an asymptotic consistency analysis of variational learning on random geometric hypergraphs, precisely characterizing the conditions ensuring the well-posedness of hypergraph learning as well as showing convergence to a weighted $p$-Laplacian equation. Motivated by this, we propose Higher-Order Hypergraph Learning (HOHL), which regularizes via powers of Laplacians from skeleton graphs for multiscale smoothness. HOHL converges to a higher-order Sobolev seminorm. Empirically, it performs strongly on standard baselines.


翻译:超图为建模高阶交互提供了自然框架,但其在半监督学习中的理论基础仍较为有限。本文对随机几何超图上的变分学习进行了渐近一致性分析,精确刻画了确保超图学习适定性的条件,并证明了其收敛于加权$p$-拉普拉斯方程。基于此,我们提出了高阶超图学习(HOHL)方法,该方法通过骨架图的拉普拉斯算子幂次进行多尺度平滑正则化。HOHL收敛于高阶索伯列夫半范数。实验表明,该方法在标准基准数据集上表现优异。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
14+阅读 · 2024年5月28日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员