Printer fingerprinting techniques have long played a critical role in forensic applications, including the tracking of counterfeiters and the safeguarding of confidential information. The rise of 3D printing technology introduces significant risks to public safety, enabling individuals with internet access and consumer-grade 3D printers to produce untraceable firearms, counterfeit products, and more. This growing threat calls for a better mechanism to track the production of 3D-printed parts. Inspired by the success of fingerprinting on traditional 2D printers, we introduce SIDE (\textbf{S}ecure \textbf{I}nformation Embe\textbf{D}ding and \textbf{E}xtraction), a novel fingerprinting framework tailored for 3D printing. SIDE addresses the adversarial challenges of 3D print forensics by offering both secure information embedding and extraction. First, through novel coding-theoretic techniques, SIDE is both~\emph{break-resilient} and~\emph{loss-tolerant}, enabling fingerprint recovery even if the adversary breaks the print into fragments and conceals a portion of them. Second, SIDE further leverages Trusted Execution Environments (TEE) to secure the fingerprint embedding process.


翻译:暂无翻译

0
下载
关闭预览

相关内容

3D是英文“Three Dimensions”的简称,中文是指三维、三个维度、三个坐标,即有长、有宽、有高,换句话说,就是立体的,是相对于只有长和宽的平面(2D)而言。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年3月26日
Arxiv
0+阅读 · 2025年3月24日
Arxiv
0+阅读 · 2025年3月13日
Arxiv
0+阅读 · 2025年3月2日
Arxiv
0+阅读 · 2025年2月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2025年3月26日
Arxiv
0+阅读 · 2025年3月24日
Arxiv
0+阅读 · 2025年3月13日
Arxiv
0+阅读 · 2025年3月2日
Arxiv
0+阅读 · 2025年2月28日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员