Recent research in the runtime analysis of estimation of distribution algorithms (EDAs) has focused on univariate EDAs for multi-valued decision variables. In particular, the runtime of the multi-valued cGA (r-cGA) and UMDA on multi-valued functions has been a significant area of study. Adak and Witt (PPSN 2024) and Hamano et al. (ECJ 2024) independently performed a first runtime analysis of the r-cGA on the r-valued OneMax function (r-OneMax). Adak and Witt also introduced a different r-valued OneMax function called G-OneMax. However, for that function, only empirical results were provided so far due to the increased complexity of its runtime analysis, since r-OneMax involves categorical values of two types only, while G-OneMax encompasses all possible values. In this paper, we present the first theoretical runtime analysis of the r-cGA on the G-OneMax function. We demonstrate that the runtime is O(nr^3 log^2 n log r) with high probability. Additionally, we refine the previously established runtime analysis of the r-cGA on r-OneMax, improving the previous bound to O(nr log n log r), which improves the state of the art by an asymptotic factor of log n and is tight for the binary case. Moreover, we for the first time include the case of frequency borders.


翻译:近年来,分布估计算法(EDAs)的运行时分析研究主要集中于处理多值决策变量的单变量EDAs。特别是,多值紧凑遗传算法(r-cGA)和UMDA在多值函数上的运行时性能已成为重要研究领域。Adak与Witt(PPSN 2024)以及Hamano等人(ECJ 2024)分别独立完成了r-cGA在r值OneMax函数(r-OneMax)上的首次运行时分析。Adak与Witt还提出了另一种称为G-OneMax的r值OneMax函数。然而,由于该函数的运行时分析复杂度更高——r-OneMax仅涉及两种类型的分类值,而G-OneMax涵盖所有可能取值——目前仅提供了实证结果。本文首次对r-cGA在G-OneMax函数上进行了理论运行时分析,证明其运行时以高概率为O(nr^3 log^2 n log r)。此外,我们改进了先前建立的r-cGA在r-OneMax上的运行时分析,将原有界限提升至O(nr log n log r),该结果通过渐进因子log n改进了现有最优结果,且在二元情况下达到紧界。值得注意的是,我们首次将频率边界情况纳入分析框架。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员