Correct risk estimation of policyholders is of great significance to auto insurance companies. While the current tools used in this field have been proven in practice to be quite efficient and beneficial, we argue that there is still a lot of room for development and improvement in the auto insurance risk estimation process. To this end, we develop a framework based on a combination of a neural network together with a dimensionality reduction technique t-SNE (t-distributed stochastic neighbour embedding). This enables us to visually represent the complex structure of the risk as a two-dimensional surface, while still preserving the properties of the local region in the features space. The obtained results, which are based on real insurance data, reveal a clear contrast between the high and the low risk policy holders, and indeed improve upon the actual risk estimation performed by the insurer. Due to the visual accessibility of the portfolio in this approach, we argue that this framework could be advantageous to the auto insurer, both as a main risk prediction tool and as an additional validation stage in other approaches.


翻译:正确估计投保人的风险对汽车保险公司非常重要。虽然实践证明该领域目前使用的工具在实际中相当高效和有益,但我们认为,在汽车保险风险估计过程中,仍然有很大的发展和改进空间。为此,我们开发了一个框架,其基础是神经网络与维度降低技术(T-SNE)相结合,同时采用多分布式随机邻居嵌入方式。这使我们能够将风险的复杂结构作为二维面表层进行视觉化,同时仍然保留地貌空间中当地区域的特点。根据实际保险数据获得的结果,揭示出高低风险投保人之间的明显差异,而且确实改善了保险人进行的实际风险估计。由于这一方法中组合的视觉可及性,我们认为,这一框架对于汽车保险人可能有利,既作为一种主要的风险预测工具,又作为其他方法中的一个额外的验证阶段。</s>

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员