Connected and autonomous vehicles (CAVs) offload computationally intensive tasks to multi-access edge computing (MEC) servers via vehicle-to-infrastructure (V2I) communication, enabling applications within the vehicular metaverse, which transforms physical environment into the digital space enabling advanced analysis or predictive modeling. A core challenge is physical-to-virtual (P2V) synchronization through digital twins (DTs), reliant on MEC networks and ultra-reliable low-latency communication (URLLC). To address this, we introduce radiance field (RF) delta video compression (RFDVC), which uses RF-encoder and RF-decoder architecture using distributed RFs as DTs storing photorealistic 3D urban scenes in compressed form. This method extracts differences between CAV-frame capturing actual traffic and RF-frame capturing empty scene from the same camera pose in batches encoded and transmitted over the MEC network. Experiments show data savings up to 71% against H.264 codec and 44% against H.265 codec under different conditions as lighting changes, and rain. RFDVC also demonstrates resilience to transmission errors, significantly outperforming the standard codec in non-rainy conditions with up to a +0.26 structural similarity index measure (SSIM) improvement over H.264 codec, and maintaining a +0.18 SSIM improvement even in challenging rainy conditions, both measured at a block error rate (BLER) of 0.25.


翻译:联网自动驾驶车辆(CAVs)通过车对基础设施(V2I)通信将计算密集型任务卸载至多接入边缘计算(MEC)服务器,从而支撑车载元宇宙应用——该体系将物理环境转化为数字空间以实现高级分析或预测建模。通过数字孪生(DTs)实现物理-虚拟(P2V)同步是核心挑战,其依赖于MEC网络与超高可靠低时延通信(URLLC)。为此,本文提出辐射场差分视频压缩(RFDVC)方法,采用以分布式辐射场作为数字孪生的RF编码器-解码器架构,以压缩形式存储逼真的三维城市场景。该方法批量提取CAV帧(捕获实际交通)与RF帧(从相同相机位姿捕获空场景)之间的差异,通过MEC网络进行编码传输。实验表明:在光照变化及雨天等不同条件下,相比H.264编解码器最高可节省71%数据量,相比H.265编解码器最高可节省44%。RFDVC还展现出对传输错误的鲁棒性:在非雨天条件下以0.25误块率(BLER)测量时,其结构相似性指数(SSIM)较H.264编解码器最高提升+0.26;在具有挑战性的雨天条件下仍保持+0.18的SSIM提升,均显著优于标准编解码器。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2019年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员