Designers increasingly rely on procedural generation for automatic generation of content in various industries. These techniques require extensive knowledge of the desired content, and about how to actually implement such procedural methods. Algorithms for learning interpretable generative models from example content could alleviate both difficulties. We propose SIGI, a novel method for inferring shapes and inducing a shape grammar from grid-based 3D building examples. This interpretable grammar is well-suited for co-creative design. Applied to Minecraft buildings, we show how the shape grammar can be used to automatically generate new buildings in a similar style.


翻译:设计者越来越依赖程序生成来自动生成各种行业的内容。这些技术需要广泛了解理想的内容以及如何实际实施这种程序方法。从示例内容中学习可解释的变异模型的分类可以缓解两种困难。我们提出了SIGI,这是从基于网格的3D建筑示例中推断形状和引出形状语法的新方法。这种可解释的语法非常适合共同创作设计。在Minecraft 建筑中应用,我们展示了形状语法如何用来自动生成类似风格的新建筑。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
11+阅读 · 2018年12月6日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Top
微信扫码咨询专知VIP会员