To unlock access to stronger winds, the offshore wind industry is advancing towards significantly larger and taller wind turbines. This massive upscaling motivates a departure from wind forecasting methods that traditionally focused on a single representative height. To fill this gap, we propose DeepMIDE--a statistical deep learning method which jointly models the offshore wind speeds across space, time, and height. DeepMIDE is formulated as a multi-output integro-difference equation model with a multivariate nonstationary kernel characterized by a set of advection vectors that encode the physics of wind field formation and propagation. Embedded within DeepMIDE, an advanced deep learning architecture learns these advection vectors from high-dimensional streams of exogenous weather information, which, along with other parameters, are plugged back into the statistical model for probabilistic multi-height space-time forecasting. Tested on real-world data from offshore wind energy areas in the Northeastern United States, the wind speed and power forecasts from DeepMIDE are shown to outperform those from prevalent time series, spatio-temporal, and deep learning methods.


翻译:为获取更强风力资源,海上风电产业正朝着显著更大、更高的风力涡轮机方向发展。这种大规模升级促使我们需摒弃传统上仅关注单一代表性高度的风能预测方法。为填补这一空白,本文提出DeepMIDE——一种统计深度学习方法,可联合建模海上风速在空间、时间和高度维度的分布。DeepMIDE被构建为多输出积分差分方程模型,其多元非平稳核函数由一组平流向量表征,这些向量编码了风场形成与传播的物理机制。通过嵌入先进的深度学习架构,DeepMIDE能够从高维外源气象数据流中学习这些平流向量,并将其与其他参数共同反馈至统计模型中,实现多高度时空概率预测。基于美国东北部海上风能区的实测数据验证表明,DeepMIDE在风速与功率预测方面均优于主流时间序列方法、时空模型及深度学习基准方法。

0
下载
关闭预览

相关内容

DeepSeek模型综述:V1 V2 V3 R1-Zero
专知会员服务
116+阅读 · 2025年2月11日
ECCV2020 | SMAP: 单步多人绝对三维姿态估计
学术头条
10+阅读 · 2020年8月9日
Self-Attention GAN 中的 self-attention 机制
PaperWeekly
12+阅读 · 2019年3月6日
DeepMind:用PopArt进行多任务深度强化学习
论智
29+阅读 · 2018年9月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
ECCV2020 | SMAP: 单步多人绝对三维姿态估计
学术头条
10+阅读 · 2020年8月9日
Self-Attention GAN 中的 self-attention 机制
PaperWeekly
12+阅读 · 2019年3月6日
DeepMind:用PopArt进行多任务深度强化学习
论智
29+阅读 · 2018年9月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员