To realize low-latency spatial transmission system for immersive telepresence, there are two major problems: capturing dynamic 3D scene densely and processing them in real time. LiDAR sensors capture 3D in real time, but produce sparce point clouds. Therefore, this paper presents a high-speed LiDAR point cloud densification method to generate dense 3D scene with minimal latency, addressing the need for on-the-fly depth completion while maintaining real-time performance. Our approach combines multiple LiDAR inputs with high-resolution color images and applies a joint bilateral filtering strategy implemented through a convolutional neural network architecture. Experiments demonstrate that the proposed method produces dense depth maps at full HD resolution in real time (30 fps), which is over 15x faster than a recent training-based depth completion approach. The resulting dense point clouds exhibit accurate geometry without multiview inconsistencies or ghosting artifacts.


翻译:为实现沉浸式远程呈现的低延迟空间传输系统,存在两大核心挑战:密集捕获动态三维场景并实现实时处理。LiDAR传感器虽能实时采集三维数据,但生成的点云较为稀疏。为此,本文提出一种高速LiDAR点云稠密化方法,以最小延迟生成稠密三维场景,在保持实时性能的同时满足动态深度补全需求。本方法融合多源LiDAR输入与高分辨率彩色图像,通过卷积神经网络架构实现联合双边滤波策略。实验表明,所提方法能以实时速率(30帧/秒)生成全高清分辨率的稠密深度图,其处理速度较近期基于训练的深度补全方法提升超过15倍。所得稠密点云具有精确的几何结构,且未出现多视角不一致或重影伪影。

0
下载
关闭预览

相关内容

【Reza Yazdanfar】基于递归神经网络的多元缺失值时间序列
【AAAI2022】SVT-Net的超轻量化网络
专知会员服务
21+阅读 · 2021年12月5日
专知会员服务
51+阅读 · 2021年5月19日
ECCV2020 | SMAP: 单步多人绝对三维姿态估计
学术头条
10+阅读 · 2020年8月9日
重新思考图卷积网络:GNN只是一种滤波器
新智元
28+阅读 · 2019年6月3日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【Reza Yazdanfar】基于递归神经网络的多元缺失值时间序列
【AAAI2022】SVT-Net的超轻量化网络
专知会员服务
21+阅读 · 2021年12月5日
专知会员服务
51+阅读 · 2021年5月19日
相关资讯
ECCV2020 | SMAP: 单步多人绝对三维姿态估计
学术头条
10+阅读 · 2020年8月9日
重新思考图卷积网络:GNN只是一种滤波器
新智元
28+阅读 · 2019年6月3日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
在TensorFlow中对比两大生成模型:VAE与GAN
机器之心
12+阅读 · 2017年10月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员