Zero-shot multi-speaker text-to-speech (TTS) systems rely on speaker embeddings to synthesize speech in the voice of an unseen speaker, using only a short reference utterance. While many speaker embeddings have been developed for speaker recognition, their relative effectiveness in zero-shot TTS remains underexplored. In this work, we employ a YourTTS-based TTS system to compare three different speaker encoders - YourTTS's original H/ASP encoder, x-vector embeddings, and ECAPA-TDNN embeddings - within an otherwise fixed zero-shot TTS framework. All models were trained on the same dataset of Czech read speech and evaluated on 24 out-of-domain target speakers using both subjective and objective methods. The subjective evaluation was conducted via a listening test focused on speaker similarity, while the objective evaluation measured cosine distances between speaker embeddings extracted from synthesized and real utterances. Across both evaluations, the original H/ASP encoder consistently outperformed the alternatives, with ECAPA-TDNN showing better results than x-vectors. These findings suggest that, despite the popularity of ECAPA-TDNN in speaker recognition, it does not necessarily offer improvements for speaker similarity in zero-shot TTS in this configuration. Our study highlights the importance of empirical evaluation when reusing speaker recognition embeddings in TTS and provides a framework for additional future comparisons.


翻译:零样本多说话人文本转语音系统依赖说话人嵌入,仅通过简短参考语音即可合成未见说话人音色的语音。尽管已开发出多种用于说话人识别的说话人嵌入,但它们在零样本TTS中的相对有效性仍未得到充分探究。本研究采用基于YourTTS的TTS系统,在保持其他框架固定的条件下,比较了三种不同的说话人编码器:YourTTS原有的H/ASP编码器、x-vector嵌入和ECAPA-TDNN嵌入。所有模型均在相同的捷克语朗读语音数据集上训练,并采用主客观方法对24个域外目标说话人进行评估。主观评估通过专注于说话人相似度的听力测试进行,客观评估则通过计算合成语音与真实语音所提取说话人嵌入间的余弦距离来衡量。两项评估结果均表明,原有的H/ASP编码器持续优于其他方案,而ECAPA-TDNN的表现优于x-vector。这些发现提示,尽管ECAPA-TDNN在说话人识别领域广受欢迎,但在当前配置下并未对零样本TTS的说话人相似度带来必然提升。本研究强调了在TTS中复用说话人识别嵌入时实证评估的重要性,并为未来进一步的对比研究提供了框架。

0
下载
关闭预览

相关内容

语音合成(Speech Synthesis),也称为文语转换(Text-to-Speech, TTS,它是将任意的输入文本转换成自然流畅的语音输出。语音合成涉及到人工智能、心理学、声学、语言学、数字信号处理、计算机科学等多个学科技术,是信息处理领域中的一项前沿技术。 随着计算机技术的不断提高,语音合成技术从早期的共振峰合成,逐步发展为波形拼接合成和统计参数语音合成,再发展到混合语音合成;合成语音的质量、自然度已经得到明显提高,基本能满足一些特定场合的应用需求。目前,语音合成技术在银行、医院等的信息播报系统、汽车导航系统、自动应答呼叫中心等都有广泛应用,取得了巨大的经济效益。 另外,随着智能手机、MP3、PDA 等与我们生活密切相关的媒介的大量涌现,语音合成的应用也在逐渐向娱乐、语音教学、康复治疗等领域深入。可以说语音合成正在影响着人们生活的方方面面。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员