Let $P$ be a bounded polyhedron defined as the intersection of the non-negative orthant ${\Bbb R}^n_+$ and an affine subspace of codimension $m$ in ${\Bbb R}^n$. We show that a simple and computationally efficient formula approximates the volume of $P$ within a factor of $\gamma^m$, where $\gamma >0$ is an absolute constant. The formula provides the best known estimate for the volume of transportation polytopes from a wide family.


翻译:让 $P 成为一条捆绑的聚希德龙, 定义为非负性或非负性 $\ bb R ⁇ n ⁇ $ 和 折叠式子空间的交叉点, 以$\ bbR ⁇ n$ 为单位。 我们显示, 一个简单且计算高效的公式, 在 $\ gamma $ > 0$ 为绝对常数的乘数内, 接近 $P$ 的体积。 该公式为来自大家族的运输多面体量提供了最已知的估计值 。

0
下载
关闭预览

相关内容

Normalizing Flows入门(上)
AINLP
10+阅读 · 2020年8月1日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
用hmmlearn学习隐马尔科夫模型HMM
全球人工智能
5+阅读 · 2018年1月10日
Arxiv
0+阅读 · 2022年2月13日
VIP会员
相关资讯
Normalizing Flows入门(上)
AINLP
10+阅读 · 2020年8月1日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
用hmmlearn学习隐马尔科夫模型HMM
全球人工智能
5+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员