Adversarial training, the process of training a deep learning model with adversarial data, is one of the most successful adversarial defense methods for deep learning models. We have found that the robustness to white-box attack of an adversarially trained model can be further improved if we fine tune this model in inference stage to adapt to the adversarial input, with the extra information in it. We introduce an algorithm that "post trains" the model at inference stage between the original output class and a "neighbor" class, with existing training data. The accuracy of pre-trained Fast-FGSM CIFAR10 classifier base model against white-box projected gradient attack (PGD) can be significantly improved from 46.8% to 64.5% with our algorithm.


翻译:Aversarial 培训过程,即用对抗数据训练深学习模式的过程,是深学习模式最成功的对抗性防御方法之一。我们发现,如果我们精细调整这一模式的推论阶段以适应对抗性输入,并附上额外信息,那么,对经对抗性训练的模式的白箱攻击的强性可以进一步提高。我们引入了一种算法,即在原始产出类和现有培训数据“邻居”类之间的推论阶段“设置火车”模型的“设置”算法。用我们的算法可以大大提高预先训练的快速FGSM CIFAR10分类模型对白箱预测梯度攻击的精确性,从46.8%提高到64.5%。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
35+阅读 · 2020年12月28日
专知会员服务
45+阅读 · 2020年10月31日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
相关论文
Arxiv
12+阅读 · 2020年12月10日
Arxiv
11+阅读 · 2018年3月23日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员