In surgical skill assessment, the Objective Structured Assessments of Technical Skills (OSATS) and Global Rating Scale (GRS) are well-established tools for evaluating surgeons during training. These metrics, along with performance feedback, help surgeons improve and reach practice standards. Recent research on the open-source JIGSAWS dataset, which includes both GRS and OSATS labels, has focused on regressing GRS scores from kinematic data, video, or their combination. However, we argue that regressing GRS alone is limiting, as it aggregates OSATS scores and overlooks clinically meaningful variations during a surgical trial. To address this, we developed a recurrent transformer model that tracks a surgeon's performance throughout a session by mapping hidden states to six OSATS, derived from kinematic data, using a clinically motivated objective function. These OSATS scores are averaged to predict GRS, allowing us to compare our model's performance against state-of-the-art (SOTA) methods. We report Spearman's Correlation Coefficients (SCC) demonstrating that our model outperforms SOTA using kinematic data (SCC 0.83-0.88), and matches performance with video-based models. Our model also surpasses SOTA in most tasks for average OSATS predictions (SCC 0.46-0.70) and specific OSATS (SCC 0.56-0.95). The generation of pseudo-labels at the segment level translates quantitative predictions into qualitative feedback, vital for automated surgical skill assessment pipelines. A senior surgeon validated our model's outputs, agreeing with 77% of the weakly-supervised predictions (p=0.006).


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员