Inferring causal structures from experimentation is a central task in many domains. For example, in biology, recent advances allow us to obtain single-cell expression data under multiple interventions such as drugs or gene knockouts. However, the targets of the interventions are often uncertain or unknown and the number of observations limited. As a result, standard causal discovery methods can no longer be reliably used. To fill this gap, we propose a Bayesian framework (BaCaDI) for discovering and reasoning about the causal structure that underlies data generated under various unknown experimental or interventional conditions. BaCaDI is fully differentiable, which allows us to infer the complex joint posterior over the intervention targets and the causal structure via efficient gradient-based variational inference. In experiments on synthetic causal discovery tasks and simulated gene-expression data, BaCaDI outperforms related methods in identifying causal structures and intervention targets.


翻译:从实验中推断因果结构是许多领域的一项核心任务,例如在生物学方面,最近的进展使我们能够在药物或基因淘汰等多种干预措施下获得单细胞表达数据,然而,干预措施的目标往往不确定或未知,而且观察数量有限,因此,无法再可靠地使用标准的因果发现方法,为填补这一空白,我们提议建立巴耶斯框架(BaCaDI),以发现和论证在各种未知实验或干预条件下生成的数据的因果结构。巴卡迪完全可以区分,它使我们能够通过高效率的梯度变换推断出复杂的联合后遗物相对于干预目标和因果结构。在合成因果发现任务和模拟基因表现数据的实验中,巴耶斯框架(BaCaDI)在确定因果结构和干预目标方面优于相关方法。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
13+阅读 · 2022年4月30日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
112+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关论文
Arxiv
14+阅读 · 2022年10月15日
Arxiv
13+阅读 · 2022年4月30日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
112+阅读 · 2020年2月5日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员