New mental tasks were investigated for suitability in Brain-Computer Interface (BCI). Electroencephalography (EEG) signals were collected and analyzed to identify these mental tasks. MS Windows-based software was developed for investigating and classifying recorded EEG data with unnecessary frequencies filtered out with Bandpass filtering. To identify the best feature vector construction method for a given mental task, feature vectors were constructed using Bandpower, Principal Component Analysis, and Downsampling separately. These feature vectors were then classified with Linear Discriminant Analysis, Linear Support Vector Machines, Critical Distance Classifiers, Nearest Neighbor Classifiers, and their Non-Linear counterparts to find the best-performing classifier. For comparison purposes, performances of already well-known mental tasks in the BCI community were computed along with that of new mental tasks introduced in this thesis. In the preliminary studies, it was found that the most promising new mental task which a BCI system could identify is the imagination of hitting a given square with an imaginary arrow from above (or below) and right, (or left) to the screen. The group of these mental tasks was named as 'Hit Series' (HS). A detailed investigation of HS was carried out and compared with the performance of Motor Imagery (MI) events which are the most heavily used mental tasks in EEG-based BCI systems. One subject achieved the maximum average performance for HS, 100 pct in the binary classifications while 99 pct in overall combined performance. The best average performances of the other two subjects for the same mental tasks were 93 pct and 87pct with the overall performance of 89 pct and 78 pct. Performances of the same three subjects for mental tasks in MI were relatively poor. The average performances were 92, 78, and 92 pct while overall performances were 87, 69, and 88 pct.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年8月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员