Recent advances in few-step diffusion models have demonstrated their efficiency and effectiveness by shortcutting the probabilistic paths of diffusion models, especially in training one-step diffusion models from scratch (\emph{a.k.a.} shortcut models). However, their theoretical derivation and practical implementation are often closely coupled, which obscures the design space. To address this, we propose a common design framework for representative shortcut models. This framework provides theoretical justification for their validity and disentangles concrete component-level choices, thereby enabling systematic identification of improvements. With our proposed improvements, the resulting one-step model achieves a new state-of-the-art FID50k of 2.85 on ImageNet-256x256 under the classifier-free guidance setting with one step generation, and further reaches FID50k of 2.53 with 2x training steps. Remarkably, the model requires no pre-training, distillation, or curriculum learning. We believe our work lowers the barrier to component-level innovation in shortcut models and facilitates principled exploration of their design space.


翻译:近年来,少步扩散模型通过捷径化扩散模型的概率路径,在效率和效果上取得了显著进展,尤其是在从头训练一步扩散模型(亦称捷径模型)方面。然而,其理论推导与实际实现往往紧密耦合,这模糊了设计空间。为解决这一问题,我们提出了一个针对代表性捷径模型的通用设计框架。该框架为其有效性提供了理论依据,并解耦了具体的组件级选择,从而能够系统性地识别改进方向。通过我们提出的改进,所得的一步模型在无分类器引导设置下,以单步生成在ImageNet-256x256上实现了2.85的FID50k新最优结果,并在训练步数增加一倍后进一步达到2.53的FID50k。值得注意的是,该模型无需预训练、蒸馏或课程学习。我们相信,我们的工作降低了在捷径模型中进行组件级创新的门槛,并促进了对其设计空间的系统性探索。

0
下载
关闭预览

相关内容

设计是对现有状的一种重新认识和打破重组的过程,设计让一切变得更美。
【ICML2025】从混淆的离线数据中自动构造奖励函数
专知会员服务
9+阅读 · 2025年5月22日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
24+阅读 · 2023年5月10日
【AAAI2023】MHCCL:多变量时间序列的掩蔽层次聚类对比学习
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关资讯
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员