In the kernel density estimation (KDE) problem one is given a kernel $K(x, y)$ and a dataset $P$ of points in a Euclidean space, and must prepare a data structure that can quickly answer density queries: given a point $q$, output a $(1+\epsilon)$-approximation to $\mu:=\frac1{|P|}\sum_{p\in P} K(p, q)$. The classical approach to KDE is the celebrated fast multipole method of [Greengard and Rokhlin]. The fast multipole method combines a basic space partitioning approach with a multidimensional Taylor expansion, which yields a $\approx \log^d (n/\epsilon)$ query time (exponential in the dimension $d$). A recent line of work initiated by [Charikar and Siminelakis] achieved polynomial dependence on $d$ via a combination of random sampling and randomized space partitioning, with [Backurs et al.] giving an efficient data structure with query time $\approx \mathrm{poly}{\log(1/\mu)}/\epsilon^2$ for smooth kernels. Quadratic dependence on $\epsilon$, inherent to the sampling methods, is prohibitively expensive for small $\epsilon$. This issue is addressed by quasi-Monte Carlo methods in numerical analysis. The high level idea in quasi-Monte Carlo methods is to replace random sampling with a discrepancy based approach -- an idea recently applied to coresets for KDE by [Phillips and Tai]. The work of Phillips and Tai gives a space efficient data structure with query complexity $\approx 1/(\epsilon \mu)$. This is polynomially better in $1/\epsilon$, but exponentially worse in $1/\mu$. We achieve the best of both: a data structure with $\approx \mathrm{poly}{\log(1/\mu)}/\epsilon$ query time for smooth kernel KDE. Our main insight is a new way to combine discrepancy theory with randomized space partitioning inspired by, but significantly more efficient than, that of the fast multipole methods. We hope that our techniques will find further applications to linear algebra for kernel matrices.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月20日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员