Huffman coding is well known to be useful in certain decision problems involving minimizing the average number of (freely chosen) queries to determine an unknown random variable. However, in problems where the queries are more constrained, the original Huffman coding no longer works. In this paper, we proposed a general model to describe such problems and two code schemes: one is Huffman-based, and the other called GBSC (Greedy Binary Separation Coding). We proved the optimality of GBSC by induction on a binary decision tree, telling us that GBSC is at least as good as Shannon coding. We then compared the two algorithms based on these two codes, by testing them with two problems: DNA detection and 1-player Battleship, and found both to be decent approximating algorithms, with Huffman-based algorithm giving an expected length 1.1 times the true optimal in DNA detection problem, and GBSC yielding an average number of queries 1.4 times the theoretical optimal in 1-player Battleship.


翻译:众所周知,Huffman编码在某些决策问题上非常有用,这些问题涉及尽量减少(自由选择的)查询的平均数量,以确定一个未知随机变量。然而,在查询比较受限的问题中,最初的Huffman编码不再起作用。在本文中,我们提出了一个描述这类问题的一般模式和两个代码方案:一个是以Huffman为基础的,另一个称为GBSC(Greedy Binary隔离编码)。我们通过在二进制决策树上介绍GBSC,证明GBSC是最佳的,告诉我们GBSC至少和香农编码一样好。然后,我们将基于这两个代码的两种算法进行比较,用两个问题来测试:DNA探测和一玩家战舰,发现这两种算法都是相当相似的,而基于Huffman的算法的预期长度为DNA探测问题真正最佳的1.1倍,而GBSC的查询平均次数是1玩家战役理论最佳的1.4倍。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年11月9日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员