Millions of clinical ECGs exist only as paper scans, making them unusable for modern automated diagnostics. We introduce a fully automated, modular framework that converts scanned or photographed ECGs into digital signals, suitable for both clinical and research applications. The framework is validated on 37,191 ECG images with 1,596 collected at Akershus University Hospital, where the algorithm obtains a mean signal-to-noise ratio of 19.65 dB on scanned papers with common artifacts. It is further evaluated on the Emory Paper Digitization ECG Dataset, comprising 35,595 images, including images with perspective distortion, wrinkles, and stains. The model improves on the state-of-the-art in all subcategories. The full software is released as open-source, promoting reproducibility and further development. We hope the software will contribute to unlocking retrospective ECG archives and democratize access to AI-driven diagnostics.


翻译:数百万份临床心电图仅以纸质扫描形式存在,无法用于现代自动化诊断。我们提出了一种全自动模块化框架,可将扫描或拍摄的心电图图像转换为适用于临床和研究应用的数字信号。该框架在37,191份心电图图像上得到验证,其中1,596份采集自阿克什胡斯大学医院。在存在常见伪影的扫描纸质心电图上,该算法获得的平均信噪比为19.65 dB。该框架进一步在埃默里纸质数字化心电图数据集(包含35,595张图像,涵盖透视畸变、褶皱和污渍等复杂情况)上进行了评估。该模型在所有子类别中均优于现有最优方法。完整软件已作为开源项目发布,以促进可重复性和后续发展。我们期望该软件能够助力解锁历史心电图档案库,并推动人工智能诊断技术的普及化应用。

0
下载
关闭预览

相关内容

论文(Paper)是专知网站核心资料文档,包括全球顶级期刊、顶级会议论文,及全球顶尖高校博士硕士学位论文。重点关注中国计算机学会推荐的国际学术会议和期刊,CCF-A、B、C三类。通过人机协作方式,汇编、挖掘后呈现于专知网站。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员