Large Language Models have quickly become a central component of modern software development workflows, and software practitioners are increasingly integrating LLMs into various stages of the software development lifecycle. Despite the growing presence of LLMs, there is still a limited understanding of how these tools are actually used in practice and how professionals perceive their benefits and limitations. This paper presents preliminary findings from a global survey of 131 software practitioners. Our results reveal how LLMs are utilized for various coding-specific tasks. Software professionals report benefits such as increased productivity, reduced cognitive load, and faster learning, but also raise concerns about LLMs' inaccurate outputs, limited context awareness, and associated ethical risks. Most developers treat LLMs as assistive tools rather than standalone solutions, reflecting a cautious yet practical approach to their integration. Our findings provide an early, practitioner-focused perspective on LLM adoption, highlighting key considerations for future research and responsible use in software engineering.


翻译:大型语言模型已迅速成为现代软件开发工作流程的核心组成部分,软件从业者正越来越多地将LLM集成到软件开发生命周期的各个阶段。尽管LLM的应用日益广泛,但人们对其在实际工作中的具体使用方式以及专业人员对其优势与局限性的认知仍了解有限。本文通过对131名全球软件从业者的调查,呈现了初步研究结果。我们的研究揭示了LLM在各类编码专项任务中的实际应用情况。软件专业人员报告了诸如提升生产力、减轻认知负荷和加速学习等益处,同时也对LLM的输出不准确、上下文理解有限以及相关伦理风险表示担忧。大多数开发者将LLM视为辅助工具而非独立解决方案,这反映了他们在集成过程中采取的谨慎而务实的态度。我们的研究结果为LLM在软件工程领域的应用提供了早期从业者视角,为未来研究和负责任使用指明了关键考量方向。

0
下载
关闭预览

相关内容

代码(Code)是专知网的一个重要知识资料文档板块,旨在整理收录论文源代码、复现代码,经典工程代码等,便于用户查阅下载使用。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员