Imaging systems are represented as linear operators, and their singular value spectra describe the structure recoverable at the operator level. Building on an operator-based information-theoretic framework, this paper introduces a minimal geometric structure induced by the normalised singular spectra of imaging operators. By identifying spectral equivalence classes with points on a probability simplex, and equipping this space with the Fisher--Rao information metric, a well-defined Riemannian geometry can be obtained that is invariant under unitary transformations and global rescaling. The resulting geometry admits closed-form expressions for distances and geodesics, and has constant positive curvature. Under explicit restrictions, composition enforces boundary faces through rank constraints and, in an aligned model with stated idealisations, induces a non-linear re-weighting of spectral states. Fisher--Rao distances are preserved only in the spectrally uniform case. The construction is abstract and operator-level, introducing no optimisation principles, stochastic models, or modality-specific assumptions. It is intended to provide a fixed geometric background for subsequent analysis of information flow and constraints in imaging pipelines.


翻译:成像系统被表示为线性算子,其奇异值谱描述了在算子层面可恢复的结构。基于算子化的信息论框架,本文引入了由成像算子的归一化奇异谱所诱导的最小几何结构。通过将谱等价类识别为概率单纯形上的点,并为此空间配备Fisher-Rao信息度量,可以获得一个在酉变换和全局缩放下不变、定义良好的黎曼几何。所得几何具有闭式距离与测地线表达式,且具有恒定正曲率。在显式限制下,复合运算通过秩约束强制边界面的形成,并在具有既定理想化条件的对齐模型中诱导出谱态的非线性重加权。仅当谱分布均匀时,Fisher-Rao距离得以保持。该构造是抽象且基于算子层面的,未引入任何优化原理、随机模型或特定模态假设,旨在为后续分析成像流程中的信息流与约束提供一个固定的几何背景。

0
下载
关闭预览

相关内容

信息几何[Ama16, AJLS17, Ama21]旨在解开概率分布族的几何结构,并研究它们在信息科学中的应用。信息学是将统计学、信息论、信号处理、机器学习和人工智能等重新组合起来的一个总称。信息几何是计量经济学家H. Hotelling(1930)和统计学家C. R. Rao(1945)出于数学上的好奇心而独立诞生的,他们考虑了概率分布的参数族,称为统计模型,是一种带有费雪度量张量的黎曼流形[Nie20]。信息几何通过使用微分几何的概念(如曲率)和张量微积分来解决问题。在他的开创性工作中,Rao考虑了流形上的黎曼测地距离和测地球来研究统计学中的分类和假设检验问题。
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
专知会员服务
15+阅读 · 2021年8月29日
专知会员服务
50+阅读 · 2021年6月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
Arxiv
0+阅读 · 2025年12月31日
VIP会员
相关VIP内容
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
【ICLR2022】GNN-LM基于全局信息的图神经网络语义理解模型
【NeurIPS 2021】学会学习图拓扑
专知会员服务
25+阅读 · 2021年10月22日
专知会员服务
15+阅读 · 2021年8月29日
专知会员服务
50+阅读 · 2021年6月2日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员