Solving partially observable Markov decision processes (POMDPs) remains a fundamental challenge in reinforcement learning (RL), primarily due to the curse of dimensionality induced by the non-stationarity of optimal policies. In this work, we study a natural actor-critic (NAC) algorithm that integrates recurrent neural network (RNN) architectures into a natural policy gradient (NPG) method and a temporal difference (TD) learning method. This framework leverages the representational capacity of RNNs to address non-stationarity in RL to solve POMDPs while retaining the statistical and computational efficiency of natural gradient methods in RL. We provide non-asymptotic theoretical guarantees for this method, including bounds on sample and iteration complexity to achieve global optimality up to function approximation. Additionally, we characterize pathological cases that stem from long-term dependencies, thereby explaining limitations of RNN-based policy optimization for POMDPs.


翻译:求解部分可观测马尔可夫决策过程(POMDPs)仍然是强化学习(RL)中的一个基础性挑战,这主要源于最优策略的非平稳性所引发的维度灾难。在本研究中,我们探讨了一种自然执行者-评论者(NAC)算法,该算法将循环神经网络(RNN)架构整合到自然策略梯度(NPG)方法与时间差分(TD)学习方法中。该框架利用RNN的表征能力来处理RL中的非平稳性问题,以求解POMDPs,同时保留了自然梯度方法在RL中的统计与计算效率。我们为此方法提供了非渐近的理论保证,包括达到函数逼近意义下的全局最优性所需的样本与迭代复杂度界限。此外,我们刻画了源于长期依赖的病态情况,从而解释了基于RNN的策略优化方法在求解POMDPs时的局限性。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
23+阅读 · 2022年2月24日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
10+阅读 · 2017年12月29日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
23+阅读 · 2022年2月24日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Arxiv
10+阅读 · 2017年12月29日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员