Balancing the trade-off between accuracy and robustness is a long-standing challenge in time series forecasting. While most of existing robust algorithms have achieved certain suboptimal performance on clean data, sustaining the same performance level in the presence of data perturbations remains extremely hard. In this paper, we study a wide array of perturbation scenarios and propose novel defense mechanisms against adversarial attacks using real-world telecom data. We compare our strategy against two existing adversarial training algorithms under a range of maximal allowed perturbations, defined using $\ell_{\infty}$-norm, $\in [0.1,0.4]$. Our findings reveal that our hybrid strategy, which is composed of a classifier to detect adversarial examples, a denoiser to eliminate noise from the perturbed data samples, and a standard forecaster, achieves the best performance on both clean and perturbed data. Our optimal model can retain up to $92.02\%$ the performance of the original forecasting model in terms of Mean Squared Error (MSE) on clean data, while being more robust than the standard adversarially trained models on perturbed data. Its MSE is 2.71$\times$ and 2.51$\times$ lower than those of comparing methods on normal and perturbed data, respectively. In addition, the components of our models can be trained in parallel, resulting in better computational efficiency. Our results indicate that we can optimally balance the trade-off between the performance and robustness of forecasting models by improving the classifier and denoiser, even in the presence of sophisticated and destructive poisoning attacks.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年6月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员