We introduce fast algorithms for solving $\ell_{p}$ regression problems using the iteratively reweighted least squares (IRLS) method. Our approach achieves state-of-the-art iteration complexity, outperforming the IRLS algorithm by Adil-Peng-Sachdeva (NeurIPS 2019) and matching the theoretical bounds established by the complex algorithm of Adil-Kyng-Peng-Sachdeva (SODA 2019, J. ACM 2024) via a simpler lightweight iterative scheme. This bridges the existing gap between theoretical and practical algorithms for $\ell_{p}$ regression. Our algorithms depart from prior approaches, using a primal-dual framework, in which the update rule can be naturally derived from an invariant maintained for the dual objective. Empirically, we show that our algorithms significantly outperform both the IRLS algorithm by Adil-Peng-Sachdeva and MATLAB/CVX implementations.


翻译:本文介绍了利用迭代重加权最小二乘法求解 $\ell_{p}$ 回归问题的快速算法。我们的方法达到了最优的迭代复杂度,其性能超越了 Adil-Peng-Sachdeva(NeurIPS 2019)提出的 IRLS 算法,并且通过一种更简单的轻量级迭代方案,匹配了 Adil-Kyng-Peng-Sachdeva(SODA 2019, J. ACM 2024)复杂算法所建立的理论上界。这弥合了现有 $\ell_{p}$ 回归理论算法与实际算法之间的差距。我们的算法与先前方法不同,采用了对偶框架,其中更新规则可以自然地由为对偶目标保持的不变量推导得出。实验表明,我们的算法在性能上显著优于 Adil-Peng-Sachdeva 的 IRLS 算法以及 MATLAB/CVX 的实现。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员