Ensuring the trustworthiness and long-term verifiability of scientific data is a foundational challenge in the era of data-intensive, collaborative research. Provenance metadata plays a key role in this context, capturing the origin, transformation, and usage of research artifacts. However, existing solutions often fall short when applied to distributed, multi-institutional settings. This paper introduces a modular, domain-agnostic architecture for provenance tracking in federated environments, leveraging permissioned blockchain infrastructure to guarantee integrity, immutability, and auditability. The system supports decentralized interaction, persistent identifiers for artifact traceability, and a provenance versioning model that preserves the history of updates. Designed to interoperate with diverse scientific domains, the architecture promotes transparency, accountability, and reproducibility across organizational boundaries. Ongoing work focuses on validating the system through a distributed prototype and exploring its performance in collaborative settings.


翻译:在数据密集型协作研究时代,确保科学数据的可信性与长期可验证性是一项基础性挑战。溯源元数据在此背景下发挥着关键作用,它记录了研究产物的来源、转换过程及使用情况。然而,现有解决方案在应用于分布式、多机构协作环境时往往存在不足。本文提出一种面向联邦环境的模块化、领域无关的溯源追踪架构,该架构利用许可区块链基础设施保障数据的完整性、不可篡改性与可审计性。系统支持去中心化交互,为研究产物提供持久标识以实现可追溯性,并通过溯源版本管理模型完整保存更新历史。该架构设计具备跨科学领域的互操作性,旨在提升跨组织边界的透明度、问责制与可复现性。当前工作重点在于通过分布式原型系统进行验证,并探究其在协作环境中的性能表现。

0
下载
关闭预览

相关内容

区块链(Blockchain)是由节点参与的分布式数据库系统,它的特点是不可更改,不可伪造,也可以将其理解为账簿系统(ledger)。它是比特币的一个重要概念,完整比特币区块链的副本,记录了其代币(token)的每一笔交易。通过这些信息,我们可以找到每一个地址,在历史上任何一点所拥有的价值。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员