We show how we can merge two run-length compressed Burrows-Wheeler Transforms (RL-BWTs) into a run-length compressed extended Burrows-Wheeler Transform (eBWT) in $O (r)$ space and $\tilde O(r + L)$ time, where $r$ is the number of runs in the final eBWT and $L$ is the sum of the longest common prefix (LCP) values at the beginnings of those runs.
翻译:我们展示了如何将两个游程编码压缩的Burrows-Wheeler变换(RL-BWT)合并为一个游程编码压缩的扩展Burrows-Wheeler变换(eBWT),其空间复杂度为$O(r)$,时间复杂度为$\tilde O(r + L)$,其中$r$为最终eBWT中的游程数量,$L$为这些游程起始位置的最长公共前缀(LCP)值之和。