The temporal consistency of yearly land-cover maps is of great importance to model the evolution and change of the land cover over the years. In this paper, we focus the attention on a novel approach to classification of yearly satellite image time series (SITS) that combines deep learning with Bayesian modelling, using Hidden Markov Models (HMMs) integrated with Transformer Encoder (TE) based DNNs. The proposed approach aims to capture both i) intricate temporal correlations in yearly SITS and ii) specific patterns in multiyear crop type sequences. It leverages the cascade classification of an HMM layer built on top of the TE, discerning consistent yearly crop-type sequences. Validation on a multiyear crop type classification dataset spanning 47 crop types and six years of Sentinel-2 acquisitions demonstrates the importance of modelling temporal consistency in the predicted labels. HMMs enhance the overall performance and F1 scores, emphasising the effectiveness of the proposed approach.


翻译:年度土地覆盖图的时间一致性对于模拟多年间土地覆盖的演变与变化至关重要。本文聚焦于一种新颖的年度卫星图像时间序列分类方法,该方法将深度学习与贝叶斯建模相结合,利用隐马尔可夫模型与基于Transformer编码器的深度神经网络进行集成。所提出的方法旨在同时捕捉:i) 年度卫星图像时间序列中复杂的时序相关性,以及 ii) 多年作物类型序列中的特定模式。该方法利用了构建于Transformer编码器之上的HMM层进行级联分类,以识别一致的年度作物类型序列。在一个涵盖47种作物类型、包含六年Sentinel-2影像的多年作物类型分类数据集上的验证表明,对预测标签进行时间一致性建模具有重要意义。隐马尔可夫模型提升了整体性能与F1分数,突显了所提方法的有效性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员